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Abstract
We have studied numerically the time-dependent photon-assisted tunneling (TD-PAT) process
for electrons confined in quantum dots (QDs) by employing the finite difference method under
the scheme of the TD-density functional theory (DFT). We have found the quasi-dark state
(quasi-DS), where the injected electron remains in the QD. By varying the barrier thickness, we
have calculated the TD profile of the electron density in a QD, and found the optimal geometry
of the lozenge QD. We have also discussed how the charged QD modulates the PAT process.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The precise control of electronic states in quantum dots (QDs)
has attracted much interest for applications involving quantum
effect devices. Of the various techniques, employing a time-
dependent (TD) field, such as an ac electric or electromagnetic
field, is regarded as being one of the most promising techniques
for controlling electrons in QDs [1–6]. However, under a
TD field, the electron wavefunction in the QD significantly
changes its shape within an extremely short time [7, 8]. Thus,
an accurate knowledge of the TD electron wavefunction is
required.

In our previous work, we have theoretically studied the
dynamic properties of photon-assisted tunneling (PAT) in a
two-dimensional (2D) but uncharged QD, focusing on the
lifetimes of individual resonant states. We revealed that the
total lifetime for an electron under PAT is determined by
the superposition of the lifetimes of the individual resonant
states [9]. We further demonstrated that an appropriate choice
of the resonant transition(s) enabled us to tune the electron
lifetime artificially, and succeeded in creating a ‘dark state’,
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where the PAT electron hardly tunnels via the QD but remains
in the QD.

The lifetime of the PAT electron is a crucial parameter
for controlling the ultra-fast TD phenomenon in the QD. In
the present work, we study the controllability of the PAT
phenomena via the ‘dark state’, focusing on this lifetime.
First, we considered an uncharged lozenge shaped QD, and
determined the optimal barrier thickness for formation of the
dark state. We further extended our study to determine how the
charging of the QD modulates the PAT process.

2. Model and method

2.1. Model

We considered the lozenge shaped QD system shown in
figure 1, in which we expect the momentum components of
the electron wavepacket to convert the direction of propagation
to a perpendicular one. Both sides of the QD are connected to
leads for electron propagation (figure 1). We suppose the QD
to be an AlGaAs QD fabricated on a GaAs substrate system,
where it has a potential barrier height of 0.3 eV and a thickness
of d = 2.5 nm, whereas the leads are surrounded by a potential
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Figure 1. Illustration of the present lozenge shaped QD system,
where both sides of the QD are connected to leads for electron
propagation. An electron wavepacket is injected into the QD from
the left lead. We set the diameter of the QD to be 40 nm. Note that
the bottom of the potential of the QD is 10 meV below that in the
uncharged condition. Other geometrical parameters and potential
profiles are indicated in the figure.

wall with infinite barrier height. We also assumed that the
electrons are confined in two dimensions but that the induced
Coulomb potential extends to three dimensions. We made
the further simplification that the barrier shape of the present
system is a well-defined hard wall. We also set the barrier
height of the QD to be 10 meV lower than the leads when the
QD is uncharged. We injected an electron wavepacket from
the left lead to the charged/uncharged 2D QD in the photon-
electric field.

2.2. Calculational method

We employed time-dependent density functional theory (DFT)
to study the time evolution of the wavefunctions within the
framework of the local spin density approximation including
the self-interaction correction (LSDA + SIC). Thus, we used
the following equations;

hks(r, t) = − h̄2

2m∗ ∇2 + vσeff(r), (1)

veff(r) = Vee(r, t)+ V σ
xc(r, t) + Vext(r, t), (2)

V σ
xc = δExc[ρα, ρβ]

δρσ (r)
−

∫
ρσ (r′) dr′

|r − r′| − δExc[ρσ , 0]
δρσ (r)

, (3)

where r is the position vector, σ , the spin coordinate and ρ,
the density of the Kohn–Sham (KS) orbital [10]. The external
potential Vext(r, t) consists of two terms:

Vext(r, t) = Vph(r, t)+ Vstat(r), (4)

where Vstat represents the static potential field, which
determines the QD and semi-infinite leads. The second term

Vph represents the electric field of the photon used to irradiate
the QD. Note that the present Vstat allows us to employ
the dipole approximation for the electron–photon interaction
semi-classically because we fixed the diameter of the present
QD to be 40 nm. The resulting energy differences between
the single-electron eigenstates are of the order of several
tens to hundreds of meV. Thus, photons having terahertz-
order frequencies are required for the present PAT, and the
corresponding wavelengths of the photons are larger than the
present QD area. Therefore the Vph(r, t) is approximately
expressed by

Vph(r, t) = E0r sin(ωt), (5)

where E0 and ω are the intensity and frequency of the photon-
electric field, respectively. It is also reasonable that the
photons interact with electrons in the QD area only, because
the present GaAs QD barrier significantly reduces the degree of
penetration of the wavefunction into the lozenge barrier region.
The symbol Vxc represents the exchange–correlation potential
with the self-interaction correction [11]. In order to solve the
TD-KS equation, we employ a finite difference technique using
a real-space mesh. Details have been reported in our previous
works [7–9].

We study the resonant tunneling through the individual
resonant states. For this, the injected wavepacket should be
spatially extended. Therefore, the energy of the wavepacket is
defined by its central momentum. Thus, we inject an electron
from the left lead into the QD as a wavepacket with the
following Gaussian form:

ψin(x, y, 0) = 1

π1/4
√

d
exp

[
− (x − x0)

2

2d2

]

×
[

i
px

h̄
(x − x0)

]
cos

π

a
(y − y0). (6)

Here, we modify the plane wave representing the electron
propagation in the x-direction with momentum px , whereas
the cosinusoidal standing wave is assumed to expand in the
y-direction. We also set the electron wavepacket to be initially
placed at (x0, y0) = (−1280, 0) nm with a real-space Gaussian
distribution with d = 320 nm. The symbol a represents the
width of the leads, the value of which is 40 nm.

To obtain a precise picture of the tunneling process, we
employ projection analysis, where we project the propagating
wavefunction ψ(x, y, t) into the resonant states of the QD
φ0

n(x, y) defined as follows;

Pn(t) =
∫

QD
ψ(x, y, t)φ0

n(x, y) dx dy n = 1, . . . , N,

(7)

where we use the nth resonant state φ0
n(x, y), which has

been numerically obtained by solving the time-independent
Schrödinger equation in real space. Resonant states up to
N = 24 are taken into account.

2.3. Symmetry of the system

The calculated one-electron eigenstates for the lozenge shaped
QD are given in figure 2, where all the eigenstates are classified
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Figure 2. Calculated eigenstates for an electron confined in a
lozenge shaped QD. The eigenstates are assigned by their irreducible
representations and sequential numbers in the order of their energy.

in terms of the irreducible representation of the point group
symmetry of D2h. This is because the connection of the
leads lowers the symmetry of the present QD system from
D4h to D2h. Thus, the resulting resonant states have orbital
symmetries of Ag, B3u, B1g, and B2u. The sequential number
found in the individual superscripts indicates the order of the
energy.

When we inject an electron as a nodeless wavepacket
having an even symmetry perpendicular to the direction
of propagation (y-direction), the electron can only transmit
through the resonant states Ag or B3u. The geometrical
symmetry forbids an electron to tunnel through the resonant
states B2u or B1g.

3. Controlling the PAT process in the QD

3.1. Quasi-dark state

We inject an electron (wavepacket) into the resonant state B4
3u

(figure 2), whereas the QD is irradiated by photons whose
electric field is polarized in the y-direction, having an energy
of 26.24 meV. Because this energy coincides with the energy
difference between the resonant states B4

3u and B2
1g, the injected

electron transits into the resonant state B2
1g during electron

tunneling, and the PAT process occurs.
The total (solid line) and the partial electronic densities

(broken lines) and several snapshots are shown in figure 3. One
can find the characteristic PAT process, where the electronic
state of the tunneling electron changes from the resonant state
B4

3u to B2
1g at t � 3 ps. The transited resonant state B2

1g has an
odd symmetry in the y-direction, whereas the potential barrier
surrounding the QD has an even symmetry. We switched off
the photon irradiation to prevent Rabi oscillations at t = 3 ps.
Thus, the tunneling electron hardly flows out, and the resulting
electron remains inside the QD. We previously called this state
a ‘quasi-dark state (quasi-DS)’ [9].

3.2. PAT process in a QD with a thin barrier

We reduced the width of the lozenge barrier to increase the
inflow of injected electrons into the QD and enhance the quasi-

Figure 3. Time evolution of the total electronic density for an
injected electron (solid line) and its projection on to the eigenstates
of the QD (dotted lines) under photon irradiation. The photon
irradiation (E0 = 1.175 × 105 V m−1, ω = 26.24 meV) is cut off at
t = 3.0 ps when the partial probability density of B2

1g reaches its first
maximum. The insets represent snapshots of the eigenstates and the
potential profiles of the lozenge shaped QD. Several snapshots of the
probability density are also given.

Figure 4. Time evolution of the total electronic density for an
injected electron (solid line) and the constituent eigenstates Pn

(dotted lines) in a QD surrounded by a thin barrier. The
photon-electric field is polarized in the y-direction
(E0 = 0.336 × 106 V m−1, ω = 26.24 meV) and is switched off at
t = 3.0 ps. The insets show snapshots of the eigenstates and the
potential profiles. Several snapshots of the probability density are
also given.

DS. The TD profile of the electron density in the QD, in which
the barrier thickness has been reduced from 20.0 to 2.5 nm
is shown in figure 4. Similar to figure 3, one can find the
analogous TD-PAT process in this thin-barrier QD.

We, then, switched off the photon irradiation at t = 3 ps
in order to produce the quasi-DS. However, we were unable
to find the characteristic quasi-DS, but there was a significant
reduction in the electronic state B2

1g. The thin barrier serves to
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Figure 5. The electron density remaining in the QD (right axis) and
the tunneling rate from the QD to the lead (left axis) for various
potential thicknesses. The remaining electron density remains
constant once the barrier thickness has reached 2.5 nm, while the
tunneling rate from the QD increases as the barrier thickness
decreases. The definition of the barrier thickness Xw is shown in the
inset.

increase the outflow of tunneling electrons from the QD. This
is because the outflow of electrons from the QD is determined
by the electron density distribution rather than by the symmetry
of the wavefunction itself. The electronic subbands in the left
lead have both even and odd symmetries in the y-direction.
Consequently, the resulting quasi-DS should be shortened in
the thin-barrier QD.

3.3. Optimal geometry of QDs for controlling electron
propagation

In order to obtain the optimal geometry of the QD, we studied
the changes in electron propagation when varying the barrier
thickness. We define the barrier thickness as shown in the
inset of figure 5, where we vary the thickness from 2.5
to 20.0 nm.

First, we discuss the tunneling rate from the QD into
the lead when the photon irradiation is switched off (t =
3.0 ps). Figure 5 (filled circle) reveals that the tunneling
rate remains constant as the barrier thickness is decreased,
but increases exponentially when the barrier thickness is less
than 10 nm.

We next focus on the electron density remaining in the
QD at t = 3.0 ps. Figure 5 (open circle) shows that this
value hardly changes with barrier thickness. This feature is
due to the geometrical characteristics between the injected
electron (wavepacket) and the QD. In the present calculation,
the injected electron has a high density around the propagating
axis, whereas in the present QD the barrier thickness (2.5 nm)
of the central gate is conserved. This geometry ensures that the
change in barrier thickness does not alter the tunneling process
into the QD. We therefore conclude that the well established
quasi-DS is expected to arise when the QD has a barrier
thickness larger than 10 nm.4

4 Note that both the tunneling rate (from the QD to the lead) and the injection
probability (the remaining electron density) significantly decrease around the
condition Xw = 2.5 nm. This is because the barrier thickness is too small to
retain the electron within the QD.

Figure 6. The time evolution of the total electronic density for the
injected electron (solid line) and the constituent eigenstates Pn

(dotted lines) in the charged QD. The initial energy of the electron
wavepacket is 140 meV. The photon-electric field is polarized in the
y-direction and is switched off at t = 3.0 ps
(E0 = 1.175 × 105 V m−1, ω = 26.24 meV). The insets show the
spatial distributions of the eigenstates. Several snapshots of the
probability density are also given.

4. Controlling a PAT process in a charged QD

4.1. PAT process in a charged QD

We also studied how charging of the QD changes the
characteristics of the quasi-DS. We confined an electron in the
ground state of the QD, supposing the total spin multiplicity
of the present system to be a singlet. Similar to the case of
the uncharged QD, an electron wavepacket is injected into the
resonant state B4

3u (figure 6). Note that the resonant state B4
3u is

energetically about 20 meV higher than that in the uncharged
QD due to the charge on the electron. Figure 6 shows the TD
profile of the electron density in the QD. It reveals that the
crossing time between the resonant states B4

3u and B2
1g is at

2.3 ps, which is almost equal to that found in the uncharged
state as shown in figure 3. Here, the electron transits to the B2

1g
state at t = 3.0 ps. As a result, the quasi-DS appears if the
photon irradiation is switched off at that time. Thus, one can
find a TD-PAT process similar to that found in the uncharged
QD.

4.2. Tunneling probability for charged and uncharged QDs

In order to clarify the effect of the charged electron more
precisely, we compare the tunneling probability in the charged
QD with that in the uncharged one without photon irradiation
(figure 7). An electron wavepacket is injected into the QD by
varying the initial kinetic energy. We calculate the tunneling
probability into the right lead when sufficient time has passed.
We find that the charged electron shifts the peaks uniformly
towards higher energies by about 20 meV, whereas the peaks
conserve their individual heights. This is because we place
an electron in the ground state, which produces a uniform
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Figure 7. The tunneling probability of an electron wavepacket
through a charged and uncharged QD. The solid and dashed lines
show the charged and uncharged conditions, respectively. The values
are obtained from the probability density in the right lead by varying
the kinetic energy of the injected wavepacket with no photon
irradiation.

distribution in the QD. Consequently, the charged electron
plays the simple role of a static potential in the tunneling
process. Thus, the characteristic TD features in the PAT
process should be conserved between charged (figure 3) and
uncharged QDs (figure 7).

5. Summary

We employed a TD-DFT approach and used a finite difference
method to study a TD-PAT process for electrons confined in
a QD. We revealed that the symmetry of the wavefunction
and the geometry of the QD potential determine the process
by which electrons tunnel into the QD, whereas the barrier
thickness is crucial in determining the electron outflow from
the QD. By varying the barrier thickness, we calculated the
TD profile of the electron density in the QD. We found that
the present lozenge shaped QD with a thickness greater 10 nm
can give rise to a well-defined quasi-DS. We also clarified how
the PAT process can be modulated in the charged QD. The

charged electron shifts the resonant-tunneling peaks uniformly
towards higher energies, whereas the heights of individual
peaks are conserved. This is because we placed the electron
in the ground state, which produces a uniform distribution in
the QD. Consequently, the charged electron plays the simple
role of a static potential in the tunneling process. Thus, the
characteristic TD features in the PAT process should be the
same both in charged and uncharged QDs.
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